
On Quality Measures for Case Base Maintenance

Thomas Reinartz1, Ioannis Iglezakis1, and Thomas Roth–Berghofer2

1 DaimlerChrysler AG, Research & Technology, FT3/AD,
P.O. Box 2360, 89013 Ulm, Germany

thomas.reinartz@daimlerchrysler.com
ioannis.iglezakis@daimlerchrysler.com

2 tec:inno GmbH,
Sauerwiesen 2, 67661 Kaiserslautern, Germany

thomas.roth-berghofer@tecinno.com

Abstract. Case base maintenance is one of the most important issues for current
research in Case–Based Reasoning (CBR). In this paper, we outline two novel
steps as part of the maintenance phase of the CBR process. The review step covers
assessment and monitoring of the knowledge containers whereas the restore step
actually modifies the contents of the containers according to recommendations
resulting from the review step. Here, we focus our attention on the review step
for the case base. For this purpose, we define several quality measures based
on different case and case base properties that describe specific characteristics
of the case base such as correctness, consistency, uniqueness, minimality, and
incoherence. These measures allow an initial implementation of the review step
for the case base container. We conclude the paper with an outline of future work
to extend these aspects of maintenance in CBR.

1 Introduction

During the last decade, Case–Based Reasoning (CBR) evolved from initial ideas origi-
nating in cognitive science to a well established intelligent technology suitable to sup-
port various applications. One of the consequences is that the focus of current CBR
research has moved from issues of case base modeling and acquisition, retrieval and
indexing tasks, and similar basic challenges more and more towards application and
practice oriented goals. In particular, the early research focus on creating an initial case
base is now of less interest but what to do with the contents of a case base over time has
become one of the crucial questions in CBR today.

First papers on these issues called efforts along these lines Case Base Maintenance
(CBM) (e.g., see [4]). From our point of view, the overall concept of CBM includes all
tasks that occur during the lifetime of a CBR system. However, a general framework
that describes all the tasks in CBM in a unique way is not yet available.

In this paper, we focus our attention on CBM activities that affect the case base
rather than the vocabulary, similarity, or adaptation knowledge containers [8]. For sim-
plicity, we consider any case base as a set of cases — currently, we do not think about
indexing schemes, specific representational issues, or similar additional aspects related
to the case base.

mailto:thomas.reinartz@daimlerchrysler.com
mailto:ioannis.iglezakis@daimlerchrysler.com
mailto:thomas.roth-berghofer@tecinno.com

In practice, a case base as a set of cases changes over time. New cases are added,
old or invalid cases are deleted, similar cases are combined to more general cases, con-
flicting cases are corrected and so on. All of these changes only happen if some kind
of indicator invokes the respective mechanisms to change the case base. Therefore, we
have to define means of quality control that enable specific realizations of such indica-
tors. In this paper, we argue that quality measures based on basic properties of single
cases and sets of cases are able to implement strategies for quality control in CBR.

This paper is organized as follows. In the next section, we report on some preli-
menary considerations related to quality control in CBR and briefly describe two novel
steps as part of the maintenance phase of the CBR process — these steps are the review
and the restore step, and here we focus our attention on the review step. Then, we define
the notations necessary to specify quality measures. Thereafter, we describe and define
various properties of single cases and sets of cases. These properties are then utilized to
define quality measures in section5. We close the paper with concluding remarks and
issues for future work.

2 Quality Control for Case–Based Reasoning

Since early definitions of the CBR process which emphasized the application cycle
of CBR, it is now more and more accepted that there is an additional maintenance
cycle in CBR needed to cope with all issues that arise when CBR is used in practical
applications and especially when the case base contents change over time [3]. We view
the first three REs in the current state–of–the–art standard CBR process [1] — Retrieve,
Reuse, Revise — as the application cycle whereas the fourth RE — Retain — is the first
step in the maintenance phase of CBR.

Initially, the difference between application and maintenance originates from the
separation of tasks for using the case base (i.e., find appropriate existing experiences
and reuse them for novel situations) and additional tasks to keep the case base in a
usable state. However, current research in the area of CBM does not sufficiently define
what this usable state looks like and which criteria help to detect situations with less
usable case bases.

In software engineering, such usability aspects of a program or system during the
stages of its development as well as later when the program or system is used in prac-
tice are considered by quality control. This is the initial motivation to consider quality
control in CBR, too. Obviously, there is an additional aspect beyond quality control
that enables actions to improve the quality of a program or system when the control
mechanisms indicate that the quality is not appropriate.

2.1 Maintenance Steps in CBR

These comparisons and ideas lead to the definition of two novel steps as part of the
maintenance phase of the CBR process. Figure1 shows the review and the restore steps
in CBM along with the control flow between them. The two steps start with a case base
as their input. This case base is either the result of an initial knowledge acquisition step

Case Base
 Review
 ok?
 Restore

n

y

Quality

Measures

Monitor

Operators

Modify

Operators

Fig. 1. Maintenance steps in CBR

at the beginning of a CBR project or the outcome of modifications to the case base at a
certain stage after the case base is already in use.

The review step considers the current state of the case base and assesses its quality.
For this purpose, we have to define quality measures that allow the computation of
values that indicate the current quality of the case base. These quality values are then
monitored and specific indicators lead to the initiation of the restore step.

The restore step utilizes specific modify operators to change or to adapt the contents
of the case base. In an ideal setting, the review step already suggests specific changes
to return to the level of quality desired. If there is no need to go to the restore step since
the quality values are still in good shape, we simply return to the case base, keep it
unchanged, and start with the next iteration of the maintenance cycle.

All in all, we propose a new 6RE CBR process which consists of six steps: Retrieve,
Reuse, Revise, Retain, Review, and Restore. The first three steps form the application
(or usage) cycle whereas the last three build the maintenance phase in CBR.

The two maintenance steps in figure1 completely abstract from other issues in
maintenance of CBR systems. We are aware of the fact that additional maintenance
tasks are important if we work on the maintenance task in a more complete way. For
example, we also have to consider the retrieval behavior and the appropriateness of the
similarity measures over time. However, we argue that it is important to start with the
case base as the central knowledge container in CBR, and that it is also important to
start with reasonable chunks of tractable subtasks in maintenance.

Moreover, we focus our attention on the review step in this paper and consider the
restore step as a topic for future work and further considerations.

2.2 Related Work

If we consider existing work towards quality measures for CBR that also consider the
case base, we are aware of the following references.

For example, Aha and Breslow [2] use measures suggested by CBR vendors to
optimize conversational CBR systems.

In the area of unstructured case bases, Racine and Yang [7] give a definition for in-
consistency and redundancy. Inconsistency can be detected through background knowl-

edge or sections which contradict each other and redundancy is observed through sub-
sumption. These measures are limited to the underlying CBR approach.

More general measures are defined by Leake and Wilson [5]. They use measures
(regularities) to define two kinds of relationships. First, they define relations between
the similarity of problems and the similarity of solutions. Second, they define relations
between prior problems and new problems.

Racine and Yang [6] suggest different measures (criteria) to evaluate case bases.
However, their focus of interest is consistency — they define measures for intra–case
inconsistencies and inter–case inconsistencies for consistency management and the op-
timization of validation methods. Intra–case inconsistency is defined as a case property
which deals with constraint violations of attributes within a case. Inter–case inconsis-
tency is defined as a case base property which can be found across two or more cases.

Smyth and Keane [9] optimize the contents of the case base to preserve the com-
petence of the case base through case deletion. They define the two measures coverage
and reachability to achieve this. Coverage of a case is the set of all problems in the prob-
lem area which can be solved by this case through adaptation. Reachability of a case
is the set of all cases which are used to solve this case through adaptation. Coverage
and reachability cannot be calculated because the possible set of problems is in general
too vast. Thus the assumption is made that the problem distribution in the case base is
representative and a heuristic is used.

Further work of Smyth and McKenna [10] brings up the measures of case density
and group density for modeling competent CBR systems. Another strategy of compe-
tence preserving is given by the definition of the measure of coverage from Zhu and
Yang [11]. Both strategies are case addition rather than case deletion policies.

In summary, all of these existing measures are limited to the underlying CBR ap-
proaches, and they use or affect other knowledge containers like the similarity container
or need heuristics to be calculated.

2.3 Requirements for Quality Measures in CBR

In conclusion, the initial thoughts on quality control in CBR and the review of the
relatively few existing papers on quality measures for CBR lead to the following re-
quirements on quality measures.

First, the quality measures and their values have to reflect user requirements that
usually ask for a small, comprehensive, and consistent case base. Second, these mea-
sures should be simple in the sense that their computation is possible in practice. Third,
we also expect the measures to be application independent and as system independent
as possible. Although specifics of quality control are possibly context dependent, the
general concepts of quality control should be valid across all applications and systems.

3 Notation

In this section, we define notations to represent cases and sets of cases. These definitions
are necessary to later specify concrete quality measures for CBR. For all notations, we

aim at as general definitions as possible with maximum flexibility to cover cases and
case bases in most CBR applications and systems.

We start the notations with the basic components for building cases, namely at-
tributes, values, problems, and solutions (see definitions1 to 3). We choose an attribute–
value representation since it ensures high flexibility and generality. We are able to trans-
form most case representations into an attribute–value representation if necessary.

Definition 1 (Attributes and Values). An attributeaj is a name accompanied by a set
Vj := {vj1, . . ., vjk, . . ., vjNj} of values. We denote the set of attributes asA := {a1,

. . ., aj , . . ., aN}, and the set of values asV :=
⋃N

j=1 Vj .

Each attribute consists of an identifier (the name) and a set of possible values. For sim-
plicity, we assume for all attributes, especially for quantitative attributes, that the set
of values contains only ”occurring” values. This means by definition and the dynamic
nature of CBR that sets of values are dynamic as well. For example, adding a new al-
ternative answer to a question in conversational CBR means extending the set of values
for this specific attribute.

Now, we define problems as sets of attribute values and solutions as any form of
information that contributes to the solution of a given problem. Note, we generally
assume that the single fault assumption holds, i.e., a single problem description only
covers a single problem which in turn requires a single solution. If we encounter a case
which covers more than a single problem, we have to transform this case into more
than one case until the single fault assumption holds again. However, we do not further
elaborate this issue here.

Definition 2 (Problem). A problem is a setpi := {pi1, . . . , pij′ , . . . , piNi}with∀j′ ∈
[1;Ni]∃aj ∈ A ∃vjk ∈ Vj : pij′ = vjk, and∀j ∈ [1;N] : | (pi ∩ Vj) | ≤ 1. We denote
the set of problems asP := {p1, . . . , pi, . . . , pM}.

The first condition in definition2 ensures that for each element in the set of values
of a problem there exists a corresponding attribute and a respective value in its set
of values. The second condition makes sure that for each attribute a problem does not
contain more than a single value. The latter assumption simplifies from situations where
it makes sense to allow more than a single value for specific attributes. However, this
situation is either emulated by adding extra sets of single values to the set of values or
by relaxing the second condition at a later stage of research.

This particular set–oriented definition enables easy implementation of the quality
measures defined below. Note, we do not assume that a single problem specifies val-
ues for each available attribute. In contrast, a problem only contains those values for
attributes which are relevant to describe the specific situation at hand.

Definition 3 (Solution). A solution is any itemsi. We denote the (multi-) set of solu-
tions asS := {s1, . . . , si, . . . , sM}.

For a solution, we do not define any additional requirements in order to avoid restric-
tions for solutions in any way (see definition3). For example, a solution possibly con-
tains any text or media information which contains a description how to ”solve” the
problem. The more structured the domain is, the more structured information or defi-
nition we provide for a solution. For example, in classification domains, a solution is

simply yet another attribute with a domain of values containing all occurring class la-
bels. On the restrictive side of this flexibility, we are only able to think about solutions in
terms of match or mis–match but not in terms of any other more fine–grained meanings.

For both sets, the set of problems and the set of solutions, we assume that they
containM elements. Since we are aware of the fact that the same solution possibly
solves different problems, we allow the setS of solutions to contain the same element
more than once. Hence,S in definition3 is possibly a multi–set. We further assume that
the enumeration of problems and solutions inP andS corresponds to each other, i.e.,
the solution for a given problem has the same index inS as the problem has inP .

For the moment, we also presume thatP andS contain components of ”real” cases,
i.e., cases that (currently) exist in the case base and that make sense in terms of the
application domain. If the contents of the case base change, both setsP andS change,
too. In addition to such real cases, we also have potential cases (i.e., cases which can
occur by combining any possible combination of attribute values) and meaningful cases
(i.e., potential cases that in fact lead to a case that corresponds to any possible case in
the application domain that makes sense). For example, occurring queries to the CBR
system provide initial hints for such meaningful cases.

Definition 4 (Case and Case Base).A case is a tupleci := (pi, si, qi) with a problem
pi, a solutionsi, and additional quality informationqi. A case base is a set of cases
C := {c1, . . . , ci, . . . , cM}.
Definition 4 states that a case is a tuple containing a problem componentpi, a solution
componentsi, and an additional information componentqi. This additional information
component is comprised of any extra information that is necessary for quality control
and that is related to the life cycle of this specific case. For example, time stamps for
the time the case is added to the case base and the time of its last access or the rela-
tive number of correct usages of the case are typical information items. In this paper,
we do not consider this additional information but focus on the problem and solution
components of cases.

In comparison to other definitions and representations of cases, we do not distin-
guish between problem — as an initial short characterization of the problem — and
situation which is then a more detailed description of the context of the entire chal-
lenge. We omit this distinction to keep the representation as simple as possible. If we
utilize this kind of representation in an application domain where there typically is an
initial short problem characterization and then a more detailed situation description, we
simply assume that the final problem component in definition4 already contains both,
the problem and the situation, possibly acquired during a dialogue or by asking for more
detailed symptoms through tests.

Example 1(Set of Cases).Assume a domain withA := {a1, a2, a3, a4}, V1 := {v11,
v12, v13}, V2 := {v21, v22, v23, v24}, V3 := {v31, v32}, andV4 := {v41, v42, v43, v44,
v45}. G := {c1, c2, c3, c4, c5, c6} in table1 is a set of cases in this domain.

4 Case and Case Base Properties

In this section, we present several case and case base properties. Case properties de-
scribe characteristics of single cases whereas case base properties provide information

Table 1.Six cases from an example case base

pi si qi

c1 v12 v23 v31 s1 q1

c2 v13 v23 s2 q2

c3 v13 v23 s3 q3

c4 v13 v23 v32 v41 s4 q4

c5 v13 v23 v32 s5 q5

c6 v12 v31 v45 s6 q6

about sets of cases, i.e., subsets of cases in the case base. We define case properties as
the atomic concepts to specify case base properties which in turn form the basis for the
definition of quality measures for CBR. In particular, atomic properties are independent
of each other, i.e., there is no general relation between any pair of two properties.

For case properties, we further distinguish between isolated and comparative char-
acteristics. Whereas isolated properties only consider characteristics of a single case
to define properties of that single case, comparative properties also take into account
information on other cases and compare them to the single case considered. Note, com-
parative case properties still define only characteristics of a single case although they
consider more than a single case.

4.1 Isolated Case Properties

The most important isolated case property is correctness. We consider a case as correct
if the given solution component really ”solves” the problem specified by the problem
component (see definition5). The crucial part of this definition is the notion ”solves”. At
this point, we basically use a place holder for any type of relation ”solves” denoted by
S. Thereby, the definition is open to all application domains. For example, in traditional
classification domains, the solution of a case is a class label and the relationS between
problem and solution holds if this class label corresponds to the true class label of the
problem. Note, as soon as we want to compute the correctness of a case, we have to
define relationS precisely.

Definition 5 (Correctness). Assume a binary relationS ⊆ P ×S, and a caseci ∈ C.
ci correct:⇐⇒ S(pi, si).

For the moment, we do not define any other case properties that only consider character-
istics of a single case although we expect that the additional information componentqi
of a case naturally leads to more isolated case properties. For example, the information
componentqi enables control of time and usage aspects and is therefore able to indi-
cate the necessity of maintenance based on these aspects. In this paper, we consider the
behavior of a single case in relation to other cases in the case base as more important,
and we will now focus our attention on this situation.

4.2 Comparative Case Properties

In this subsection, we turn to comparative case properties that describe characteristics
of single cases in relation to other cases. For all of the following definitions in this
subsection, we assume that each case is correct.

Definition 6 (Consistency). AssumeG ⊆ C, andci ∈ G.
ci consistent withinG :⇐⇒ @ci′ ∈ G : pi′ ⊆ pi ∧ si 6= si′ .

The first comparative case property describes consistency within a set of cases. A single
case is consistent within a set of cases if and only if there does not exist any other case
which solves the same or a more general problem differently. In general, this definition
covers the issue of alternatives. We assume that for each possible problem there exists a
”best” solution. For example, the quality of a solution is characterized by the complexity
of its realization — is better to re–boot a computer than to buy a new one.

Consequently, we want the case base to consist only of cases that have ”best” solu-
tions and do not allow any alternative solutions. This also excludes the possibility of an
alternative mentioned in the same case or as an extra case which has the same problem
component but a different solution component. Although we do not want alternatives,
we certainly must specify a concept, namely consistency, which enables the quality con-
trol mechanisms to detect alternatives and to suggest changes to the case base to avoid
alternatives.

Moreover, definition6 also covers situations where the subset relation between
problem components with different solution components indicates that the more gen-
eral problem definition possibly lacks some detailed information which is necessary to
make the two cases distinctive.

Definition 7 (Uniqueness). AssumeG ⊆ C, andci ∈ G.
ci unique withinG :⇐⇒ @ci′ ∈ G, ci′ 6= ci : pi′ = pi ∧ si = si′ .

Definition 7 declares a case as unique if and only if there does not exist another case
within the considered set of cases which solves exactly the same problem in exactly the
same way.

A more general relation which covers a similar situation is subsumption (see def-
inition 8). A case subsumes another case if its problem component is a true subset of
the problem component of the subsumed one and the solution component remains the
same. We call cases without any different case that subsumes it minimal.

If we assume that the elements in the problem component define the problem as a
conjunction of all elements, then the subsumes relation corresponds to solving a more
general problem in the same way. The more specific problem characterization then pos-
sibly contains too many details unnecessary to specify the core problem. The restore
step in CBM is responsible for resolving such situations accordingly.

Definition 8 (Minimality). AssumeG ⊆ C, andci ∈ G.
ci minimal withinG :⇐⇒ @ci′ ∈ G : pi′ (pi ∧ si = si′ .

The most complex comparative case property describes situations with two cases within
a set of cases that coincide in most of their components except for a specific number
∆ of values (see definition9). We call a case incoherent within a set of cases if and

only if there does not exist any other case which overlaps with the case in more than a
pre-determined number of components. We consider incoherent cases as positive since
the more cases differ, the broader is the spectrum of problems that they cover.

Definition 9 (Incoherence). AssumeG ⊆ C, ci ∈ G, and1 ≤ ∆ ∈ IN.
ci incoherent withinG :⇐⇒ @ci′ ∈ G : | pi ∩ pi′ | +∆ = Ni = Ni′ ∧ si = si′ .

With parameter∆ we trigger the extent of overlapping information within coherent
cases. For example, if∆ is 1, two cases are coherent if all of their values are the same
except for a single value (in each case). Note, this difference in a single component
corresponds either to a situation with two different values for the same attribute or with
different values for separate attributes.

For each pair of coherent cases, we possibly consider modification operators that
generalize the two cases to a single one which represents both original cases. Remov-
ing the distinguishing values completely, joining them as a single set of alternatives, or
generalizing to the next abstract level in a hierarchy of values are potential generaliza-
tion operators.

Example 2(Case Properties).AssumeG in table1, and∆ = 1.
(i) c1 is consistent withinG;

c4 is not consistent withinG except ifs2 ≡ s3 ≡ s4 ≡ s5.
(ii) c1 is unique withinG;

c2 is not unique withinG if s2 ≡ s3.
(iii) c1 is minimal withinG;

c5 is not minimal withinG if s2 ≡ s5 or s3 ≡ s5.
(iv) c2 is incoherent withinG;

c6 is not incoherent withinG if s1 ≡ s6.

4.3 Case Base Properties

In the previous subsections, we defined several case properties to make decisions about
the quality of cases. Now, we build upon these characteristics and specify properties for
sets of cases, and hence for an entire case base which is simply a set of cases containing
all cases in the case base.

Definition 10 (Case Base Properties).AssumeG ⊆ C.
(i) G is correct :⇐⇒ ∀ci ∈ G : ci correct.
(ii) G is consistent :⇐⇒ ∀ci ∈ G : ci consistent withinG.
(iii) G is unique :⇐⇒ ∀ci ∈ G : ci unique withinG.
(iv) G is minimal :⇐⇒ ∀ci ∈ G : ci minimal withinG.
(v) G is incoherent :⇐⇒ ∀ci ∈ G : ci incoherent withinG.

As case properties started with a notion of correctness for single cases, we also define
a notion of correctness for a set of cases (see definition10). This notion of correctness
uses the correctness of single cases — a set of cases is correct if and only if all of its
cases are correct.

In a similar vein, we also adopt the definition of consistent, unique, minimal, and
incoherent. Definition10summarizes the extensions of these definitions for single cases
to sets of cases in the same way as for correctness.

5 Initial Quality Measures for Case Base Maintenance

In this section, we use the previously defined case and case base properties to specify
initial quality measures for case base maintenance. We start the set of initial quality
measures with several degrees of quality. Definition11 summarizes degrees of correct-
ness, consistency, uniqueness, minimality, and incoherence.

Definition 11 (Degrees of Case Base Properties).AssumeC⊆ is the set of all subsets
of C.

(i) D√ : C⊆ 7→ [0; 1], D√(G) :=
| {ci ∈ G | ci correct} |

| G |

(ii) D⊗ : C⊆ 7→ [0; 1], D⊗(G) :=
| {ci ∈ G | ci consistent within G} |

| G |

(iii) D 6= : C⊆ 7→ [0; 1], D 6=(G) :=
| {ci ∈ G | ci unique within G} |

| G |

(iv) D(: C⊆ 7→ [0; 1], D((G) :=
| {ci ∈ G | ci minimal within G} |

| G |

(v) D∆ : C⊆ 7→ [0; 1], D∆(G) :=
| {ci ∈ G | ci incoherent within G} |

| G |

Each of these degrees computes the number of ”good” cases in terms of the defined case
properties and divides this number by the total number of cases within the considered
set of cases. Hence, each degree counts the relative number of ”good” cases within a
given set of cases.

In comparison to the case base properties, these degrees enable a more refined con-
sideration of the characteristics of the case base. The previously defined case base prop-
erties are essentially special cases for which each of the degrees yields value1.

The purpose of the different degrees in terms of the maintenance steps in CBR is
to get values that provide an indicator for the review step and the decision whether
the case base state is still acceptable or not. For example, we specify a threshold and
then classify a case base as acceptable if and only if each of the degrees is above this
threshold.

Of course, we also think of more complex monitor operators that consider the de-
gree values over time and react on the dynamic changes of the resulting functions. For
example, we invoke maintenance in terms of applying modify operators as soon as the
difference between two measurements is too large into a decreasing direction rather
than only comparing absolute degree values and a pre–specified threshold.

Definition 12 (Quality Measures). AssumeC⊆ is the set of all subsets ofC, andw√,
w⊗, w6=, w(, w∆ ∈ [0; 1] with

∑

x∈{
√

,⊗,6=,(,∆}
wx = 1.

(i) Qmin : C⊆ 7→ [0; 1], Qmin(G) := min
x∈{

√
,⊗, 6=,(,∆}

{Dx(G)}

(ii) Qmax : C⊆ 7→ [0; 1], Qmax(G) := max
x∈{

√
,⊗, 6=,(,∆}

{Dx(G)}

(iii) Qw : C⊆ 7→ [0; 1], Qw(G) :=
∑

x∈{
√

,⊗, 6=,(,∆}
wx · Dx(G)

Definition 12 shows three examples for quality measures in CBR that cumulate the
various degrees specified above to a single overall value of case base quality. The first
variant considers the minimum value of degrees as the crucial number for quality con-
trol. If we assume that we compare quality values with a given threshold to trigger the
restore step, this means that quality control based on this measure invokes modify op-
erators as soon as a single degree — regardless which one — becomes inappropriate.
The second example in definition12 does exactly the opposite. It starts to recommend
changes to the case base only if all degrees depict the same bad quality.

The third measure is a compromise between those two extremes and considers the
average degree value if we set all weights to the same value. On the other hand, this
measure also allows the user to set preferences on specific aspects. For example, the
user does not care about redundant cases and setsw6= to zero, but does not want any
inconsistencies within any subset of cases in the case base and consequently initializes
w⊗ to a relatively high value.

Example 3(Quality Measures). AssumeG in table1, G is correct,s1 ≡ s6, s2 ≡
s3 ≡ s5, ∆ = 1, andw√ = w⊗ = w6= = w(= w∆ := 1/5.

Then,D√(G) = 1, D⊗(G) = 5/6, D 6=(G) = 2/3, D((G) = 5/6, andD∆(G) =
2/3. Moreover,Qmin(G) = 2/3,Qmax(G) = 1, andQw(G) = 4/5.

We get more alternative quality measures if we allow the weightswx to be any function
of G, or by adding aspects of time, or by taking into account measures of usage informa-
tion, and so on. At this point, the concept of specifying quality measures is sufficiently
general to enable appropriate definitions of respective quality control mechanisms in
almost any domain.

6 Concluding Remarks

In summary, we considered case base maintenance as one of the most important issues
in current CBR research and suggested two novel steps, the review and the restore steps,
within the maintenance phase of the CBR process. We emphasized quality control in
the review step and proposed several quality measures based on case and case base
properties to monitor the quality of the case base.

Beyond the exact and precise definition of a framework which covers all aspects
and tasks in CBM, our suggestions for future work point in several directions. First, we
further analyze the specified quality measures, their relation to each other, and how their
values actually affect the case base. Second, we plan to implement the quality measures
and to test if they are really appropriate to measure the quality of a case base and to
indicate when the restore step in maintenance is necessary. This issue implies that we
also define different mechanisms to monitor the quality values and to specify concrete
moments to invoke the restore step.

The current definition of quality measures considers local similarity only as a match-
ing function — for this aspect, we also plan to extend our definitions to other more fine–
grained local similarity measures. Moreover, extensions to other knowledge containers
beyond the case base are an important issue for future work.

Another line of future research is the restore step itself. We have to define which
modify operators are necessary to change the case base and to improve its current qual-
ity. In particular, this task also means that we have to analyze dependencies between
quality control and modification of the case base.

Finally, issues of computation play an additional role. For example, if the case base
becomes too large to compute the quality measures in a reasonable amount of time, we
have to consider aspects of clustering cases in order to compute quality values in local
case base areas and then cumulate these local values to an overall quality of the entire
case base.

Acknowledgments

We thank Andre Ḧuttemeister and Mehmet G̈oker for their initial ideas on quality mea-
sures for maintenance in CBR which led to the definitions presented in this paper.

References

1. Agnar Aamodt and Enric Plaza. Case–based reasoning: Foundational issues, methodological
variations, and system approaches.AI Communications, 7(1):39–59, 1994.

2. David W. Aha and Leonard A. Breslow. Refining conversational case libraries. InProceed-
ings of the Second International Conference on Case–Based Reasoning, pages 267–278,
1997.

3. Mehmet G̈oker and Thomas Roth-Berghofer. The development and utilization of the case–
based help–desk support system HOMER.Special Issue of the International Journal “Engi-
neering Applications of Artificial Intelligence”, 12(6), 1999.

4. David B. Leake and David C. Wilson. Categorizing case–base maintenance: Dimensions and
directions. InProceedings of EWCBR–98, Advances in Case–Based Reasoning. Springer–
Verlag, 1998.

5. David B. Leake and David C. Wilson. When experience is wrong: Examining CBR for
changing tasks and environments. InProceedings of the Third International Conference on
Case–Based Reasoning, 1999.

6. Kirsti Racine and Qiang Yang. On the consistency management of large case bases: the case
for validation. InProceedings of the AAAI–96 Workshop on Knowledge Base Validation,
American Association for Artificial Intelligence (AAAI), 1996.

7. Kirsti Racine and Qiang Yang. Maintaining unstructured case bases. InProceedings of the
1997 International Conference on Case Based Reasoning, pages 553–564, 1997.

8. Michael M. Richter. The knowledge contained in similarity measures. Invited Talk at the
International Conference on Case–Based Reasoning, 1995.

9. Barry Smyth and Mark T. Keane. Remembering to forget: A competence–preserving deletion
policy for case–based reasoning systems. InProceedings of the 14th International Joint
Conference on Artificial Intelligence, pages 377–382, 1995.

10. Barry Smyth and Elizabeth McKenna. A portrait of case competence: Modelling the com-
petence of case–based reasoning systems. InProceedings of the 4th European Workshop on
Case–Based Reasoning., pages 208–220, 1998.

11. Jun Zhu and Qiang Yang. Remembering to add: Competence–preserving case addition poli-
cies for case base maintenance. InProceedings of the International Joint Conference in
Artificial Intelligence (IJCAI), 1999.

	On Quality Measures for Case Base Maintenance
	1 Introduction
	2 Quality Control for Case--Based Reasoning
	2.1 Maintenance Steps in CBR
	2.2 Related Work
	2.3 Requirements for Quality Measures in CBR

	3 Notation
	4 Case and Case Base Properties
	4.1 Isolated Case Properties
	4.2 Comparative Case Properties
	4.3 Case Base Properties

	5 Initial Quality Measures for Case Base Maintenance
	6 Concluding Remarks

