
The Conflict Graph for Maintaining
Case–Based Reasoning Systems

Ioannis Iglezakis

DaimlerChrysler AG, Research & Technology, FT3/AD,
P.O. Box 2360, 89013 Ulm, Germany

ioannis.iglezakis@daimlerchrysler.com

Abstract. The maintenance of case–based reasoning systems is remarkably im-
portant for the continuous working ability of case–based reasoning applications.
To ensure the utility of these applications case properties like correctness, consis-
tency, incoherence, minimality, and uniqueness are applied to measure the qual-
ity of the underlying case base. Based on the case properties, the conflict graph
presents a novel visualization of conflicts between cases and provides a technique
on how to eliminate these conflicts and therefore maintain the quality of a case
base. An evaluation on ten real world case bases shows the applicability of the
introduced technique.

1 Introduction

During the last years, the research in the realm of case–based reasoning (CBR) systems
in general and maintaining of case–based reasoning systems in particular has become
a main topic for many researchers. In the field of maintaining case–based reasoning
systems various measures like coverage and reachability [14,17] and thereby case com-
petence [15] are modeling the competence of a case base. The use of case properties
which show the relations within cases and between cases [11] is an other way to measure
the quality of a case base. Compared to the standard case–based reasoning cycle [1], the
case properties are embedded in an extended case–based reasoning cycle [12] with the
two additional steps:reviewand restore. The review step detects conflicts within and
between cases with the help of the case properties. These conflicts are then monitored
and the decision is made when to maintain and therefore trigger the restore step. The re-
store step suggests the necessary changes for the contents of the case base to reestablish
the quality.

This paper focuses on the monitor task of the review step and how it can be used
to restore the quality of the case base. It introduces a new visualization for the conflicts
between cases — the conflict graph — and shows how this conflict graph can be used
to find a subset of cases which must be changed in order to restore the quality of a case
base. Therefore the needed case properties are revisited in section2. The concept of
a conflict graph is defined in section3, followed by results of an evaluation in section
4. Section5 discusses the related work. Finally, section6 concludes the paper with a
summary and issues of further work.

mailto:ioannis.iglezakis@daimlerchrysler.com

2 The Case Properties Revisited

As explained above, the review step in the extended case–based reasoning cycle has
among other things like monitoring the quality of the case base the duty of measuring
the case base through case properties. These measures are disjunct and used for quality
indication within cases or between cases. The formal definition of the case properties
which are used here can be found in [11]. In this section only an informal description of
the case propertiescorrectness, consistency, uniqueness, minimality, and incoherence
is given to motivate them for further use in the next sections.

2.1 Correctness

There are two kinds of case properties:isolatedandcomparative. Correctness is the
only isolated property, because the correctness of a case can be recognized without
considering any other case. A case is believed to be correct if and only if the problem
description of the case corresponds to the given solution. This implies that the solution
solves the problem that is described by the problem description. Note that for the fol-
lowing descriptions of case properties and experiment the correctness of the cases is
assumed.

2.2 Consistency

The first of the comparative case properties is consistency. A given case is called con-
sistent if and only if there is no other case whose problem description is a subset or the
same of the given case’s problem description and their solutions are different. Hence,
consistency covers situations where the subset relation between problem description
with different solutions reports that there possibly is an absence of some attributes or
values to make the two cases distinctive.

Table1 illustrates a counter–example from the help–desk domain when two cases
are not consistent. This example shows two cases with the same operating system, the

Table 1.Example for (in-) consistency

Operating System Printer Printing Paper Ink Solution

WinNT HP840c No Yes Yes Update Driver
WinNT HP840c No — — Second Level

same printer and no printing. In addition, the first case has more information about the
paper and ink situation than the second. Note that the value “—” for the paper and ink
attribute in the second case means the these values are unknown. Thus, with regard to
the above description the second case is not consistent, because the problem description
of the second case is a real subset of the first case and the solutions are different.

In general, consistency contains the occurrence of alternatives. It is assumed that for
each capable problem description there exists a “best” solution. As a matter of course,
the case base should only consist of cases that have “best” solutions. Thus, no alternative
solutions are allowed neither as an alternative in the same case nor as a further case with
the same or a more general problem description and a different solution.

Note that it is possible for some domains to have equivalent solutions for the same
or more general problem description. The travel domain is a good example for this kind
of domain and it is up to the case base administrator to decide whether these alternatives
are admitted or not.

2.3 Uniqueness

Another comparative case property is uniqueness. A given case is called unique if and
only if the problem description and corresponding solution of each other case in the
case base is different. A counter–example from the help–desk domain is displayed in
table2. It describes the fact when the given case property uniqueness is violated.

Table 2.Example for (not) unique

Operating System Printer Printing Paper Ink Solution

WinNT HP840c No Yes Yes Update Driver
WinNT HP840c No Yes Yes Update Driver

For both cases in this example, the problem descriptions and solutions are exactly
the same. With the above description of uniqueness follows that both cases are evidently
not unique.

2.4 Minimality

The third comparative case property is minimality which means the opposite of sub-
sumption. A given case is called minimal if and only if there is no other case for which
the problem description is a real subset of the given case and the solutions are identical.
This concept is clarified by the counter–example in table3 which contains an example
when two cases are not minimal.

In this table both cases are identical besides the value for the operating system. The
first case contains a value for the operating system while the second case does not. This
disobeys the definition of minimality because the problem description of the second
case is a real subset of the first case’s problem description and the solution for both
cases are equal.

Table 3.Example for (not) minimal

Operating System Printer Printing Paper Ink Solution

WinNT HP840c No Yes Yes Update Driver
— HP840c No Yes Yes Update Driver

2.5 Incoherence

Finally, the last comparative case property is incoherence. A given case is incoherent if
and only if each other case with the same solution as the given case has the same prob-
lem description with the exception of a specific (small) number (∆) of attributes whose
values are different. To illustrate this case property in table4 once more a counter–
example is used.

Table 4.Example for (not) incoherent (for∆ = 1)

Operating System Printer Printing Paper Ink Solution

WinNT HP840c No Yes Yes Update Driver
Win95 HP840c No Yes Yes Update Driver

Both cases in table4 have the same solution and differ only in the value for the oper-
ating system and in contrast to the minimality example in both cases these values exist.
With the assumption that∆ = 1 and the above description it follows that these two
cases have a conflict with the definition of incoherent and are therefore not incoherent.

This section gave an informal description of the case properties in combination with
examples from the help–desk domain. With these descriptions it is possible to build
case base properties in which the case properties are assigned to a whole case base. For
example, if each case in a case base is minimal, then the entire case base is by definition
also minimal. To receive a better granularity of assessment, the case properties can be
measured in degrees within the case base. The measurement for each case property is
computed by counting the number of cases which fulfill this property divided by the
total number of cases in the case base. This mapping of sets to numbers offers a more
sophisticated way to measure the quality of the case base. Finally, quality measures
are defined as a function over the degrees of case properties. For example, a weighted
sum could respresent one usable function. More information on the subject of quality
measures for case base maintenance can be found in [11]. In the following section, the
notion of the conflict graph is introduced. This notion can help to visualize the conflicts
between cases and decide which cases should be changed in order to restore the quality
of a case base.

3 The Conflict Graph

After measuring the quality of the case base with the help of the case properties, the
next step is to monitor these results. This section will introduce a novel method to
display conflicts between cases which are indicated by case properties and how this
representation can be used in order to maintain a case base.

When applying the described case properties from the previous section to the case
base it is usually that not all properties are satisfied and thus the degree of case prop-
erties is below 100%. This means that for some cases a case property is not fulfilled.
The purpose of thesingle conflict indicatorsin definition 1 is to test two cases for a
particular case property and to indicate a possible conflict.

Definition 1 (Single Conflict Indicator). Assume a case baseC with two cases
ci, cj ∈ C andi 6= j.

(i) cInd1 : C × C 7→ {¬ consistent, ∅},

cInd1(ci, cj) :=
{

¬ consistent, if ci is not consistent with cj

∅ else
(ii) cInd2 : C × C 7→ {¬ incoherent, ∅},

cInd2(ci, cj) :=
{

¬ incoherent, if ci is not incoherent with cj

∅ else
(iii) cInd3 : C × C 7→ {¬minimal, ∅},

cInd3(ci, cj) :=
{

¬minimal, if ci is not minimal with cj

∅ else
(iv) cInd4 : C × C 7→ {¬ unique, ∅},

cInd4(ci, cj) :=
{

¬ unique, if ci is not unique with cj

∅ else

To explain the above as well as the following definitions an exemplary case base
is designed. Table5 shows this case base with seven cases. Each caseci contains the
solutionsi and the problem descriptionpi which encloses the attribute–value pairsvij .

Table 5.Example case base with seven cases

ci pi si

c1 v11 s1

c2 v12 v22 s1

c3 v11 v22 s1

c4 v12 v22 v33 s2

c5 v11 v23 v35 s1

c6 v11 v23 v34 s1

c7 v11 s1

Example 1(Single Conflict Indicator).Assume the casesc1 andc6 from the case base
given in table5 and the single conflict indicatorscInd1 andcInd3. The results are:
cInd1(c1, c6) = ∅ andcInd3(c1, c6) = ¬minimal.

After defining the single conflict indicators the next step is to define theconflict
indicator setwhich is then used to build theconflict indicator.

Definition 2 (Conflict Indicator Set). Assume the indices of all single conflict indi-
catorsI = {1, . . . , n}, wheren is the maximum number of single conflict indicators,
andI⊆ the set of all subsets ofI. The conflict indicator setM is defined asM ∈ I⊆

with M 6= ∅ andml ∈ M where l denotes the l–th element ofM .

The purpose of the conflict indicator set is to choose which single conflict indicators
are used to configure a conflict indicator. Note that for the single conflict indicators
given in definition1 the maximum numbern of single conflict indicators isn = 4
which limits the possible number of different conflict indicator sets to2n − 1 = 15.

Definition 3 (Conflict Indicator). Assume a case baseC with two casesci, cj ∈ C
andi 6= j, andM is a conflict indicator set.

cInd : I⊆ × C × C 7→ {¬ consistent,¬ incoherent,¬minimal,¬ unique, ∅},
cInd(M, ci, cj) :=

⋃|M |
l=1 cIndml(ci, cj)

Note that for the given single conflict indicatorscIndk in definition1 the value of
|cInd(M, ci, cj)| is 0 or 1 for all conflict indicator setsM and pairs of casesci, cj .

The conflict indicator is a composition of the single conflict indicators. The conflict
indicator setM determines the configuration of which single conflict indicators are
used. The results are the kind of conflicts between two cases or the empty set if all case
properties are satisfied. Example2 illustrates this behavior.

Example 2(Conflict Indicator).Assume the casesc1 andc6 from the case base given
in table5 and the conflict indicator setM = {1, 2} andM ′ = {3, 4}. Then results are
cInd(M, c1, c6) = ∅, andcInd(M ′, c1, c6) = ¬minimal.

Theconflict graphcreates a graphical representation of conflicts between two cases
within a case base which are indicated through the conflict indicator. This means that the
conflict graph contains all the cases which have conflicts detected by the case properties
and connects these cases with a labeled edge. The label depends on the kind of property
violation. Definition4 formalizes this in a more detailed form.

Definition 4 (Conflict Graph). Assume a case baseC = {c1, . . . , ci}, a conflict
indicator setM , a set of nodesN ∈ C⊆ whereC⊆ is the set of all subsets ofC, and
a set of edgesE ⊆ N × N with ejk ∈ E andejk defines an edge from node of case
cj to node of caseck with label cInd(M, cj , ck) if and only if cInd(M, cj , ck) 6= ∅.
The conflict graphG = (N, E, M) is a directed Graph with labeled edges and∀cj ∈
N, ∃ck ∈ N : cInd(M, cj , ck) 6= ∅ and∀cj ∈ C \N, ∀ck ∈ C : cInd(M, cj , ck) = ∅.

Note that for some case bases it is possible to have more than one conflict graph
which are not connected. For example, if a case base has four cases{c1, . . . , c4} andc1

has only an inconsistency conflict with casec2, casec3 has only a minimality conflict
with casec4 and no other conflicts are detected, then the result would be two conflict
graphs with the casesc1 andc2 in the one and the casesc3 andc4 in the other graph.

Figure1 shows the conflict graph for the example case base given in table5. The
graph displays thirteen conflicts within the case base. One consistency conflict(c2, c4),
four incoherence conflicts(c2, c3), (c3, c2), (c5, c6), (c6, c5), six minimality conflicts
(c1, c3), (c1, c5), (c1, c6), (c7, c3), (c7, c5), (c7, c6), and two uniqueness conflicts which
are(c1, c7) and(c7, c1). Note that with the increasing number of cases the conflict graph

C2

C1C7

C5C4

C3

C6

¬
 c

on
si

st
en

t

¬ incoherent

¬
 m

in
im

al

¬ unique

¬ m
inim

al

¬ minim
al

¬ minimal¬ minimal¬ minimal

¬ inco herent

Fig. 1. The conflict graph for table5

can confuse a human observer like the case base administrator. However it is possible to
cluster groups of conflict cases and present these groups first with the ability to navigate
into these groups.

The advantage of the conflict graph in comparison to other representations like ad-
jacent lists is the ability to display the cases which do not satisfy the defined case prop-
erties in a compact manner. Thus, the case base administrator can decide which cases
have to be modified to restore the quality of the case base. However this decision is
very complex because the goal is to modify at least as possible cases dependable on the
arising costs. The following definitions do support the case base administrator within
this task by identifying the cases which should be modified. Hence, the following defi-
nitions can help to automate the parts of the restore step within the extended case base
reasoning cycle.

Definition 5 (Independent Graph).A GraphG = (N, E, M) with conflict indicator
setM is independent if and only if there is no pair of nodesni, nj ∈ N for whichG
defines an Edgeeij ∈ E.

GraphG = (N, E,M) is independent :⇐⇒ E = ∅

An independent graphis the result after the decision is made which cases have to
be modified. It is a graph in which the nodes have no edges and therefore no conflicts
which each other. For example, if the cases{c1, c3, c4, c5, c6} are removed from the
conflict graph in figure1 then the resulting graph would be independent. However it is
not appropriate to remove too many cases because of the unnecessary loss of knowledge
and the costs which appear with each modification of the case base. Note that instead of
removing a case other modify operators are possible. For simplicity, in this paper only
the remove operator is considered. A list of more sophisticated modify operators can be
found in [12].

Definition 6 (Optimal Subset). Assume the conflict graphG = (N, E,M), the set
N⊆ of all subsets ofN , the conflict indicator setM , the cost functioncost : N⊆ 7→
[0; 1], N ′ ∈ N⊆, and the graphG′ = (N ′, E′,M) is independent.

N ′ is the optimal subset withinN⊆ :⇐⇒ @N ′′ ∈ N⊆ : cost(N ′) > cost(N ′′)
and the graphG′′ = (N ′′, E′′,M) is independent.

Definition6 states that the optimal subset of a conflict graph creates an independent
graph and is mainly dependable of a cost function. The cost function is an arbitrary
function which describes the optimization goal. Example3 introduces a cost function
for which the search for an optimal subset becomes equivalent to the search for a max-
imum independent set.

Example 3(Maximum Independent Set).Assume a conflict graphG = (N, E, M),
a node subsetN ′ ∈ N⊆, and a cost functioncost : N⊆ 7→ [0; 1], cost(N ′) :=
|N ′|/|N |. Then the search for an optimal subset is equivalent to the search for a maxi-
mum independent set. For the conflict graph in figure1 the maximum independent set
is (c3, c4, c5), or (c3, c4, c6). Note that the search for a maximum independent set is
NP − complete [13].

The case base administrator can control the search for an optimal subset on three
different ways. If there exists more than one solution for the optimal subset like in
example3 then the first way is to decide which of the possible solution is adequate
for the actual situation. The second way is to mark the cases which should be put in the
optimal subset. This can totally change the behavior of the algorithm which searches for
the optimal subset. For example, if casec1 is marked for the conflict graph in figure1,
then the optimal subset with the same cost function as in example3 is (c1, c2) or (c1, c4)
and hence different from the optimal subset without any interaction. Finally, the third
way is to mark the cases which should not be included in the optimal subset. Again,
this would change the manner of how to search for the optimal subset. For example, if
casec5 is marked for the conflict graph in figure1, then the optimal subset with cost
function like in example3 is (c3, c4, c5).

4 Evaluation

The last section introduced the conflict graph and how it can be used to indicate a subset
of cases which should be changed to restore the quality of the case base. This section
will present an evaluation of these conflict graph related techniques for the maintenance
of case–based reasoning systems.

4.1 Experimental Procedure

To perform the experiments, the data set of cases is divided into a training set and a
test set. The training set becomes the case base and is then used for the case–based
reasoning algorithm. Then each case from the test set is tested against the case base
within a case–based reasoning algorithm. This implements the benchmark for the other
experiments and a certain accuracy and case base size is acquired. To achieve the re-
maining experiments the training case base is optimized. Thus, the conflict indicator is
configured with the following conflict indicator sets{{1}, {2}, {3}, {4}, {1, 2, 3, 4}}.
This means that each single case property was applied on its own as a conflict indicator
and then all properties together. For the optimization the same cost function is chosen as
in example3: cost : N⊆ 7→ [0; 1], cost(N ′) := |N ′|/|N | whereN denotes the Nodes
in the conflict graph andN ′ ∈ N⊆. This means that the search for the optimal subset is
NP − complete. Algorithm 1 is a heuristics to calculate a not necessarily optimal so-
lution of the optimal subset for a given graph. The algorithm returns a nodes–collection
which is then viewed as the optimal subset and the graph which can build from the
nodes–collection is guaranteed to be independent.

Algorithm 1 (Heuristic to calculate the optimal subset for a given graph).
nodes–collection := nodes of graph
while (nodes–collection does not build an independent graph)

n := node with the maximum number of incoming and outgoing edges
remove node n from nodes–collection

end while
return nodes–collection

Furthermore, the optimization’s modify operator is remove and the optimization is done
automatically without human interaction. After optimizing the case base the test cases
are applied to the case base, a level of accuracy is reached, and the case base size is
registered.

4.2 Experimental Results

The aim of the predefined benchmarks and experiments is to show that the representa-
tion of the conflict graph and the following search for the optimal subset is applicable
for maintaining case–based reasoning systems.

To accomplish this, data of the UCI Machine Learning Repository [6] is taken.
Namely, the following case bases are used:Annealing(797 cases),Audiology (200

cases),Australian(690 cases),Credit Screening(690 cases),Housing(506 cases),Let-
ter Recognition(16000 cases),Pima(768 cases),Soybean(307 cases),Voting Records
(435 cases), andZoo (101 cases). To achieve the results that are presented below, a
five–fold cross validation with a basic optimistic nearest neighbor algorithm is used. If
numerical attributes did occur they have been pre–processed by a standard equal–width
discretization.

Table 6.Results

benchmark consistency incoherence minimality uniqueness all properties
case base size acc. size acc. size acc. size acc. size acc. size acc.

Annealing 637.6 0.97 622.8 0.97 416.0 0.97 532.6 0.97 574.8 0.97 335.6 0.97
Audiology 160.0 0.70 160.0 0.70 144.2 0.70 156.0 0.70 145.2 0.69 128.6 0.70
Australian 552.0 0.81 550.6 0.81 509.4 0.80 552.0 0.81 548.6 0.81 506.0 0.80
Credit S. 552.0 0.80 550.6 0.80 508.8 0.79 551.4 0.80 549.0 0.79 505.6 0.78
Housing 404.8 0.31 404.2 0.31 391.2 0.30 404.8 0.31 401.4 0.30 387.2 0.30
Letter R. 16000.0 0.88 16000.0 0.88 14787.8 0.88 16000.0 0.88 15081.4 0.88 14044.6 0.88
Pima 614.4 0.65 614.4 0.65 575.6 0.65 614.4 0.65 612.0 0.65 573.0 0.65
Soybean 245.6 0.92 244.8 0.92 217.0 0.92 245.0 0.92 243.2 0.92 213.2 0.92
Voting R. 348.0 0.93 344.4 0.92 257.6 0.93 271.6 0.93 280.6 0.93 191.8 0.93
Zoo 80.8 0.95 80.8 0.95 53.8 0.95 80.8 0.95 50.4 0.95 33.4 0.95

Table6 shows that optimization through the case properties keeps the case base con-
sistent, incoherent, minimal, and unique and reduces the case base size while preserving
the prediction accuracy.

For the single case properties as conflict indicators, the case base size is reduced
up to 34.8% from the original case base for incoherence in the annealing case base and
the reduction for all properties as conflict indicator is up to 58.7% while the prediction
accuracy remains the same as in the benchmark. The combination of all case properties
gives each time a better case reduction result than the single case properties. The results
vary from 0.5% between incoherence and all properties in the pima case base and 33.7%
between uniqueness and all properties in the zoo case base.

In addition, the letter recognition case base with 16000 cases shows that the de-
scribed technique is applicable for large case bases, too.

Furthermore, in comparison with the results in [8] which uses a different kind of
optimization the results for the prediction accuracy were better and thus more robust
against the used case base domain. Moreover, this evaluation used combinations of
the case properties while the earlier did not. Another advantage of the optimization
used in this evaluation is that it is possible to have an interaction with the case base
administrator.

This shows that with the help of the conflict graph and the search of an optimal sub-
set within this graph it is possible to maintain a case base reasoning system. Furthermore
with the interactive help of a case base administrator the results should improve.

5 Related Work

The formal definitions of the case properties used for the conflict graph can be found
in Reinartz et al. [11]. Several additional measures like case base properties, degrees of
case properties, and quality measures are defined there, too. Evaluations showing that
case properties are valueable for maintaining case–based reasoning systems have been
done by Iglezakis et al. [7,8]. The extension of the standard case–based reasoning cycle
and the definitions of the modify operators were first proposed by Reinartz et al. [12].

The use of graphs to maintain conversational case libraries (CCL) has been pre-
sented by Aha [3] and Aha and Breslow [4,5]. The CCL is applied to a transformation
process which produces hierarchies. Then the hierarchies are pruned with the help of
some design guidelines provided by case–based reasoning vendors. The resulting hier-
archies are transformed back into cases of the CCL.

Over the years there where different kinds of measures for the maintenance of case–
based reasoning systems published. Racine and Yang [9,10] proposed the measures
for inconsistency and redundancy for the maintenance of large and unstructured case
bases. Furthermore, with the access and use of background knowledge it is possible
to differentiate between intra–case and inter–case measures. Smyth and Keane [14]
described two different measures — coverage and reachability. The coverage of a case
is the set of all problems in the problem area which can be solved by this case through
adaptation. The reachability of a case is the set of all cases which are used to solve
this case through adaptation. These two measures lead to different strategies how to
preserve the competence of the used case base, namely case deletion by Smyth and
Keane, and case addition introduced by Zhu and Yang [17]. In addition, Smyth and
McKenna [15] presented the measures for case density and group density for modeling
competent case–based reasoning systems which are case addition strategies, too. More
strategies on how to decide which cases should be stored are proposed by the DROP1–
DROP5 and DEL Algorithms by Wilson and Martinez [16], and Aha’s CBL1–CBL4
algorithms [2].

6 Conclusions

With the help of case properties it is possible to create consistent, incoherent, minimal,
and unique case bases. These properties have been shown to be valuable in the field of
maintaining case–based reasoning systems. The application of these properties is the
first step in a framework for maintaining case–based reasoning systems, to monitor the
properties and then if necessary to restore the quality of the case base are the next steps.

This paper introduced a novel method to visualize conflicts between cases which are
detected by the case properties and how to use this presentation to maintain a case base.
This is accomplished by formal definitions of the conflict graph and the optimal subset.
The subsequent evaluations showed that the proposed concepts and methods are useful

for maintaining case–based reasoning systems, by reducing the size of the evaluated
case bases and preserve the prediction accuracy while satisfy the case properties.

Further tasks appear on both sides of the review–restore chain of the extended case–
based reasoning cycle. At the beginning of the chain, the case properties can be ex-
tended by the use of the similarity measures. This would allow the application of the
case properties more flexibility in use. On the other side of the chain the use of other
modify operators than remove (cf. Reinartz et al.[12]) provides a strong technique for
not only reducing the case base size but also for changing the cases which have conflicts
and therefore increasing the quality of the case base. This would yield to an approach
which does improve the cases rather than remove them.

Acknowledgments

The author is grateful to Thomas Reinartz (DaimlerChrysler, Research & Technology,
FT3/AD) and Thomas Roth–Berghofer (tec:inno — empolis knowledge management
GmbH) for the fruitful discussions and continual support.

References

1. Agnar Aamodt and Enric Plaza. Case–based reasoning: Foundational issues, methodological
variations, and system approaches.AI Communications, 7(1):39–59, 1994.

2. David W. Aha. Case–based learning algorithms. InProceedings of the DARPA Case–Based
Reasoning Workshop, pages 147–158. Morgan Kaufmann, 1991.

3. David W. Aha. A proposal for refining case libraries. InProceedings of the 5th German
Workshop on Case–Based Reasoning (GWCBR), 1997.

4. David W. Aha and Leonard A. Breslow. Learning to refine case libraries: Initial results.
Technical Report AIC–97–003, Navy Center for Applied Research in AI, 1997.

5. David W. Aha and Leonard A. Breslow. Refining conversational case libraries. InProceed-
ings of the Second International Conference on Case–Based Reasoning, pages 267–278,
1997.

6. Catherine L. Blake and Christopher J. Merz. UCI repository of machine learning databases,
1998.

7. Ioannis Iglezakis and Christina E. Anderson. Towards the use of case properties for main-
taining case based reasoning systems. InProceedings of the Pacific Knowledge Acquisition
Workshop (PKAW), pages 135–146, 2000.

8. Ioannis Iglezakis, Thomas Roth–Berghofer, and Christina E. Anderson. The application
of case properties in maintaining case–based reasoning systems. InProfessionelles Wis-
sensmanagement: Erfahrungen und Visionen (includes the Proceedings of the 9th German
Workshop on Case–Based Reasoning (GWCBR)), pages 209–219. Shaker Verlag, 2001.

9. Kirsti Racine and Qiang Yang. On the consistency management of large case bases: the case
for validation. InProceedings of the AAAI–96 Workshop on Knowledge Base Validation,
American Association for Artificial Intelligence (AAAI), pages 84–90, 1996.

10. Kirsti Racine and Qiang Yang. Maintaining unstructured case bases. InProceedings
of the 2nd International Conference on Case–Based Reasoning (ICCBR), pages 553–564.
Springer–Verlag, 1997.

11. Thomas Reinartz, Ioannis Iglezakis, and Thomas Roth–Berghofer. On quality measures
for case base maintenance. InProceedings of the 5th European Workshop on Case–Based
Reasoning, pages 247–259. Springer–Verlag, 2000.

12. Thomas Reinartz, Ioannis Iglezakis, and Thomas Roth–Berghofer. Review and restore for
case–base maintenance.Computational Intelligence: special issue on maintaining CBR sys-
tems, 17(2):214–234, 2001.

13. Steven S. Skiena.The Algorithm Design Manual. Springer–Verlag, 1998.
14. Barry Smyth and Mark T. Keane. Remembering to forget: A competence–preserving deletion

policy for case–based reasoning systems. InProceedings of the 14th International Joint
Conference on Artificial Intelligence, pages 377–382, 1995.

15. Barry Smyth and Elizabeth McKenna. A portrait of case competence: Modelling the com-
petence of case–based reasoning systems. InProceedings of the 4th European Workshop on
Case–Based Reasoning., pages 208–220. Springer–Verlag, 1998.

16. D. Randall Wilson and Tony R. Martinez. Reduction techniques for exemplar-based learning
algorithms.Machine Learning, 38(3):257–286, 2000.

17. Jun Zhu and Qiang Yang. Remembering to add: Competence–preserving case addition poli-
cies for case base maintenance. InProceedings of the International Joint Conference in
Artificial Intelligence (IJCAI), pages 234–239, 1999.

	The Conflict Graph for MaintainingCase--Based Reasoning Systems
	1 Introduction
	2 The Case Properties Revisited
	2.1 Correctness
	2.2 Consistency
	2.3 Uniqueness
	2.4 Minimality
	2.5 Incoherence

	3 The Conflict Graph
	4 Evaluation
	4.1 Experimental Procedure
	4.2 Experimental Results

	5 Related Work
	6 Conclusions

